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ABSTRACT 

We numerically simulated the sound pressure field around the violin body using the finite-element method. 

Although there are many studies on the vibration and sound radiation of violins, obtaining results with a neat 

interpretation from a quantitative and qualitative standpoint remains a challenge. Herein, the highly precise 

geometry of the violin made by Stradivari was scanned with a micro-computed tomography scanner, where 

the material of the violin body was wood (spruce and maple) with orthotropic properties. This study aimed 

to clarify the relationship between the properties of wood and acoustic radiation around a violin vibrated by 

a force at the bridge. 
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1. INTRODUCTION 

We conducted numerical simulations of the vibration and sound radiation of violins made by old masters, 

such as the Antonio Stradivari and Guarneri families. Analyses using numerical simulations have been 

actively promoted since the beginning of the 21st century.1 Computed tomography (CT) scanners have also 

been used to observe the internal structure of violins 2,3 and to investigate the material properties of wood.4,5 

Furthermore, methods using numerical simulation and/or CT scanners have been investigated as non-invasive 

and non-destructive methods for the analysis of historical assets such as violins.6 

Previously, we conducted a coupled numerical simulation of violins using the finite-element method (FEM) 

and modeled the effects of wood properties on the vibration mode of the violin body.7 This paper reports the 

measurement of the geometric data of a violin made by Stradivari using a micro-CT scanner, the relationship 

between the mode vibration and properties of wood, and the results of numerical simulations coupling the 

vibrations by a forced oscillation on a bridge with the acoustic field pressure around the violin. 

 

2. GEOMETRIC DATA AND NUMERICAL SIMULATION 

2.1 Three-dimensional geometry using a micro-CT scanner  

The geometry of the violin made by Antonio Stradivari (1719) was scanned from the tailpiece to the scroll 

of the neck using a micro-CT scanner with a precision of 0.1 mm, as illustrated on the left side of Figure 1. 

The image on the right side of Figure 1 is a snapshot visualizing the interior of the violin body using scanned 
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geometric data with computer-assisted design (CAD) software. As the scanned raw-geometric data include 

many fragments and holes, we must clean the data using CAD software before numerical simulation and 

visualization.  

The import of geometric data, meshing, and FEM calculations were conducted using COMSOL 

MultiphysicsTM. The geometric data were divided into various parts, such as top and back plates, ribs, sound 

posts, and bass bars, to set different physical properties for each of them (Figure 2), and then saved as STEP 

files (standard for the exchange of product model data). The STEP files were imported into COMSOL 

Multiphysics as geometric objects. In addition, we set the spherical area of air surrounding the violin (Figure 

2, right side). Points A–D represent the positions where the sound pressure was calculated in Section 3.2. In 

COMSOL Multiphysics, the mesh generator discretizes the domains into tetrahedral second-order mesh 

elements using the free-mesh method.8 In total, there are approximately two million elements, including 

violins and air. The eigenmode frequency, displacement of the body, and sound pressure were calculated 

using the FEM via the acoustic-structure interaction module of COMSOL Multiphysics.  

 

 

 

Figure 1 – View using the micro-computed tomography scanner and visualization of the interior of the 

violin using computer-aided design software 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Meshes of numerical simulation using the auto-mesh function of COMSOL Multiphysics. Points 

A–D is the position where the sound pressure is calculated in Section 3.2. 
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2.2 Parameter setting of the numerical simulation 

The physical characteristics of wood can be set in three orthogonal directions in COMSOL Multiphysics: the 

longitudinal-grain direction (x-axis), radial annual-ring direction (y-axis), and direction tangential to the 

annual ring (z-axis). The typical values of the physical properties, such as Young’s modulus, rigidity modulus, 

and Poisson’s ratio, have been measured by Green et al.9 The representative values of the density for maple 

and spruce are 0.63 and 0.36, respectively, and Young’s moduli, Ex, are 12.6 GPa and 9.9 GPa, respectively. 

EY/EX, EZ/EX, and the rigidity modulus (G/EX) are the ratios of the longitudinal Young’s modulus (EX) (Table 

1).  

 

Table 1 Values of orthotropic properties employed in the numerical simulation9.  

Ex value of maple is 12.6 GPa and that of spruce is 9.9 GPa. 

Property Maple Spruce 

Young’s modulus EY / EX 0.132 0.078 

EZ / EX 0.065 0.043 

Rigidity modulus GXY / EX 0.111 0.064 

  GYZ / EX 0.021 0.003 

  GXZ / EX 0.063 0.061 

Poisson’s ratio μXY 0.424 0.372 

μYZ 0.774 0.435 

μXZ 0.476 0.467 

 

However, these values differed from the actual scanned values of the violins. We cannot disassemble and 

measure the properties of a cultural asset such as the Stradivari violin. Thus, we estimated the values for the 

numerical simulation using the frequency response function (FRF) of the scanned violin, as described in the 

next section. 

 

3. SIMULATION RESULTS 

3.1 Mode vibration and estimation of values of orthotropic properties 

In this study, we estimated the orthotropic properties of wood to be set in the numerical simulation by 

comparing important eigenmode frequencies obtained by numerical simulation with those measured from the 

real Stradivari violin (1719) by FRF. In other words, this is an inverse problem where we estimate the values 

of the real properties of the wood by changing parameters such as density and Young’s modulus in the 

numerical simulation and matching the eigenmode frequencies of the numerical simulation with those of the 

FRF.  

The eigenmodes at low frequencies under 1,000 Hz, called A0, B1−, and B1+, were investigated in the 

vibration analysis of violins 1,2. Figure 3 shows the FRF of the violin proposed by Stradivari (1719). Using a 

miniature hammer, we tapped the sides of the bridge on both the E and G strings and measured the results 

using an FFT analyzer. The peak on the left side of the graph (265 Hz) corresponds to the first air cavity 

mode, called A0. The next peaks were B1− (428 Hz) and B1+ (511 Hz), which were purported to influence 

the timbre of the sound. 

Figure 4 shows the numerical simulation of the changes in the eigenfrequency owing to the changes in density 



 

 

and EX. The middle value in each graph represents the frequency calculated using the representative values.9 

This graph depicts eigenfrequencies with varying densities and EX ranging from −20% to +20%. The free 

vibrations of the violin body were calculated without any constraint points. 

Figure 4 shows that the eigenfrequency increased as EX increased and decreased as the density increased. As 

shown in Table 2, the eigenfrequencies obtained by the numerical simulation using representative values 

were lower than those obtained by the FRF of the scanned violin. For instance, if we decrease the density of 

both maple and spruce by 10% and increase Ex by 10% (also EY, EZ, and G), the eigenfrequencies obtained 

by the numerical simulation approach those obtained by the FRF. 

 

 

Figure 3 – Frequency response function of Stradivari (1719) from the hammering test. 

 

 
 

Figure 4 – Eigenfrequencies in the A0, B1−, and B1+ modes. The eigenfrequency increases with Young’s 

modulus and decreases with the increasing density.  
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Table 2 – Comparison of the eigenfrequency (Hz): with the frequency response function (FRF) of 

Stradivari, numerical simulation with the representative value of the wood property9, and with a decrease in 

density of 10% and increase in Ex of 10%. 

 Experiment Numerical simulation 

Mode FRF (Strad. 1719) Representative9 Density −10%, Ex +10% 

A0 265 258 265 

B1− 428 399 431 

B1+ 511 475 516 

 

 

Figure 5 shows the displacement in the z-axis direction of the top/back plate in A0, B1 −, and B1+, which 

was calculated using the modified density and EX, as mentioned above. The red area indicates where the 

displacement in the z-axis direction is positive, and the blue area indicates where it is negative.  

In the A0 mode, the top plate bends widely on the bass bar side (left side of the violin in Figure 6 (a)). In the 

B1 mode, the top plate bends in the horizontal direction, and the back plate bends in the vertical direction. In 

contrast, the top plate bent in the vertical direction and the back plate bent in the horizontal direction in the 

B1+ mode. The displacement of the violin becomes asymmetrical because there is a sound post and bass bar 

inside the violin body. Other studies have found similar displacement patterns.2 

Figure 6 shows the acoustic pressure fields around the violin in the numerical simulations. The radiation 

above the f-hole of the top plate was significant. The radiation under the back plate was also significant in 

the B1 mode. The sound radiation from the body appears to depend significantly on the bass bar and bend in 

the long-side direction (upper- and lower-bout directions).  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Displacement in A0, CBR, B1−, B1+ mode.  
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Figure 6 – Sound radiation around the violin in the A0, B1−, and B1+ modes.  

 

3.2 Acoustic pressure field around the violin in forced vibrations on the bridge 

This section presents the simulation results when a forced sinusoidal oscillation is applied to the bridge of 

the violin. Figure 7 depicts the displacement of the body in the z-axis direction by forced vibrations. The 

right side of Figure 7 shows the oscillating position of the G string. The frequency of the sinusoidal function 

at 196 Hz (G3, the fundamental frequency of the G string) was inputted in the y-axis direction. On the left-

hand side of Figure 7, the red area indicates where the displacement is positive and the blue area indicates 

where the displacement is negative.  

The bridge alternately oscillated from side to side in the y-axis direction, and alternate vibrations of the top 

plate were induced by the bridge oscillation. In particular, the magnitude of the displacement on the bass bar 

side (the left side of the violin in Figure 7) was significant. We also speculated that the vibrations of the scroll 

and fingerboard do not significantly influence the sound volume and timbre; however, these vibrations are 

not negligible (see the video of detailed simulation results, https://youtu.be/m3cgG-TJs9Q).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Displacement of the violin by the forced vibrations on the bridge where the G string is placed 

(196 Hz). The bass bar side has significant vibrations. The scroll and fingerboard also vibrate. 

(a) mode A0, 265.0 Hz (c) mode B1+, 516.1 Hz (b) mode B1−, 431.4 Hz 
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The acoustic pressure fields in the y–z plane 

(including the bridge and sound post) and in the 

x–y plane (30 mm above the arch of the top 

plate) are shown in Figures 8 and 9, respectively. 

We simulated the vibration of the top plate by the 

sinusoidal oscillation of the bridge and 

concentric sound radiation from the f-hole and 

C-bouts. Similar to the experimental results 

obtained by Wang,10 sounds at a low pitch 

radiated concentrically from the violin body. By 

contrast, the directivity of the sound was 

observed at a higher pitch. In the near future, we 

will numerically analyze the characteristics of 

sound radiation by varying the frequency and position of forced vibrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Sound pressure fields around the body of the violin in the x–y plane 30 mm above the top of the 

arch. 

Figure 10 shows the temporal change in acoustic pressure around the violin. Each line depicts the transition 

of the acoustic pressure at points A–D, as shown in Figure 2, during approximately two cycles of the 

sinusoidal function from the start of the forced oscillation (t = 0–0.01 s). The dotted line in the graph indicates 

the sinusoidal function of forced vibration on the bridge. The acoustic pressure at each point was similarly 

varied. Thus, we can also infer from the graph that the sound radiates concentrically when the bridge vibrates 

at 196 Hz with an open G string. 

For instance, we can numerically simulate the directivity of sound radiation for the pitch difference. This 

t=0.1T (T=1/196 s) t=0.15T t=0.3T 

t = 0.6T t = 0.8T 
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Figure 8 – Sound pressure field in the y–z plane in the 

forced vibrations with a sine wave of 196 Hz at the G 

string position on the bridge. 



 

 

analysis of the acoustic field around the 

violin can be conducted experimentally 

in an anechoic chamber using array 

microphones. However, there are only a 

limited number of laboratories and 

facilities with anechoic chambers, and 

the cost is high. Thus, if we can substitute 

the numerical simulation for the 

experiment on sound radiation, coupled 

simulation can become an extremely 

useful tool.  

4. CONCLUSIONS 

A coupled simulation of the mode vibrations and sound radiation of a violin scanned by a micro-CT scanner 

was conducted using the FEM. We analyzed the relationship between the properties of wood and the 

eigenfrequency and visualized the vibration of the violin body and sound radiation in mode vibrations. 

Furthermore, we demonstrated that coupled simulation can analyze sound radiation. In future work, we intend 

to conduct a numerical simulation of sound radiation caused by string oscillations and analysis of sound 

radiation in a concert hall using a large-scale parallel computer. 
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Figure 10 – Temporal change of sound pressure around 

the violin body at points A–D (in Figure 2). 

 

 


